首页> 外文OA文献 >A High Speed Multi-label Classifier based on Extreme Learning Machines
【2h】

A High Speed Multi-label Classifier based on Extreme Learning Machines

机译:基于极限学习机的高速多标签分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper a high speed neural network classifier based on extremelearning machines for multi-label classification problem is proposed anddis-cussed. Multi-label classification is a superset of traditional binary andmulti-class classification problems. The proposed work extends the extremelearning machine technique to adapt to the multi-label problems. As opposed tothe single-label problem, both the number of labels the sample belongs to, andeach of those target labels are to be identified for multi-label classificationresulting in in-creased complexity. The proposed high speed multi-labelclassifier is applied to six benchmark datasets comprising of differentapplication areas such as multi-media, text and biology. The training time andtesting time of the classifier are compared with those of the state-of-the-artsmethods. Experimental studies show that for all the six datasets, our proposedtechnique have faster execution speed and better performance, therebyoutperforming all the existing multi-label clas-sification methods.
机译:提出并讨论了一种基于极限学习机的高速神经网络分类器。多标签分类是传统的二进制和多分类问题的超集。拟议的工作扩展了极限学习机技术,以适应多标签问题。与单标签问题相反,样品所属的标签数量以及每个目标标签都将被识别以进行多标签分类,从而增加了复杂性。所提出的高速多标签分类器应用于六个基准数据集,其中包括多媒体,文本和生物学等不同的应用领域。将分类器的训练时间和测试时间与最新方法进行比较。实验研究表明,对于所有六个数据集,我们提出的技术都具有更快的执行速度和更好的性能,从而优于所有现有的多标签分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号